

PAR Kicker Upgrade and PAR Retirement Considerations

Nick Sereno

PAR Manager, Booster Manager, Linac Deputy Manager

Michael Borland

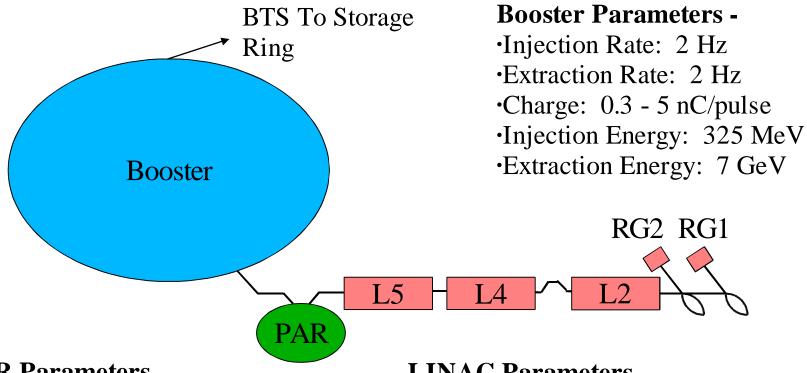
Operations Analysis Group / AOD

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- APS injector requirements.
- APS injector configuration and operation.
- PAR kicker upgrade advantages and drawbacks.
- PAR retirement options and issues.
- Conclusion.


APS Injector Requirements

- Top-up and timing mode are the most demanding requirements for the injector
- Top-up requires
 - Single-pulse injection every 2 minutes.
 - 2-3.5 nC/shot
 - Charge requirement will increase if we push the emittance down.
- Timing (singlets) mode requires good bunch purity: 1 part in 100,000 or better.

Injector Configuration and Operation for Storage Ring Operations

PAR Parameters -

•Injection Rate: <30 Hz

•Injection Pulses: 1-5

•Extraction Rate: 2 Hz

•Extracted Charge: 0.3-5 nC

Operating Energy: 325 MeV

LINAC Parameters -

·Beam Rate: 2 - 10 Hz

•Charge: 0.3 - 1 nC/pulse

•Extraction Energy: 325 MeV

•Linac macropulse length 11-16 ns

RG2 (30 ns RG1)

PAR Primary Functions

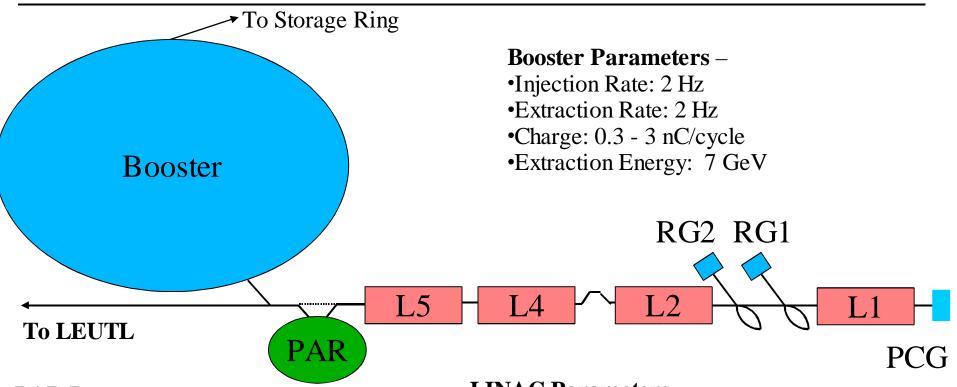
- Accumulate charge from the linac
 - Reduces need for high charge gun (5x reduction)
 - Can routinely provide 5nC/pulse
 - Can probably reach operating envelope of 10nC/pulse
- Compress bunch from 10-30 ns to 2.8 ns to provide "pure" injection into booster
 - Reduces need for short-pulse gun (10x reduction)

PAR Issues

- Reliability, maintenance, and time-to-repair for
 - kicker magnets (>50% of PAR downtime)
 - rf systems (anecdotally the next biggest contributor)
- We can address this by
 - Improving troublesome components
 - Finding a way to eliminate the PAR altogether
- We'll look at benefits of kicker upgrade
- We'll also look at difficulties of retiring the PAR
 - Need to deliver a single pure bunch of up to 10 nC.
 - Do it every two minutes for 6 weeks.

PAR Kicker Upgrade Benefits

- Primary benefit is reduced downtime for 325 MeV operation.
- Present design has 1~2 failures per year
 - Redesign will reduce this rate
- Presently, a kicker failure takes as much as 13 hours to repair
 - Top-up not possible during this time
 - Refills possible if beam lost, but
 - Bunch purity is beyond horrible
 - Takes about 30 minutes to remove locks, close tunnel, bring up linac, and fill
 - About 1 hour required to shut down and resume repairs
- Present design requires significant maintenance at each shut down
 - New kicker system would be easier to maintain.


PAR Kicker Upgrade Benefits

- New design will operate at higher voltage than present design
- Will allow the PAR to operate at design energy (450 MeV).
 - Improved booster reliability: more consistent injection due to injection into booster when magnet currents are higher.
 - Improved PAR reliability: lower fractional energy spread from the linac will give higher, more stable capture efficiency in the PAR (particularly for RG1).
 - May allow top-up/LEUTL interleaving at nearly the highest linac energy (~500 MeV).
- Optionally, we might be able to eliminate the EK kicker altogether.

Interleaving Injector Configuration With PC Gun and PAR for top-up

PAR Parameters -

•Injection Rate: 6 Hz

•Extraction Rate: 2 Hz

•Injection Pulses: 1-3

•Extracted Charge: 0.3 – 3 nC/cycle

•Injection Energy: 325 – 450 MeV

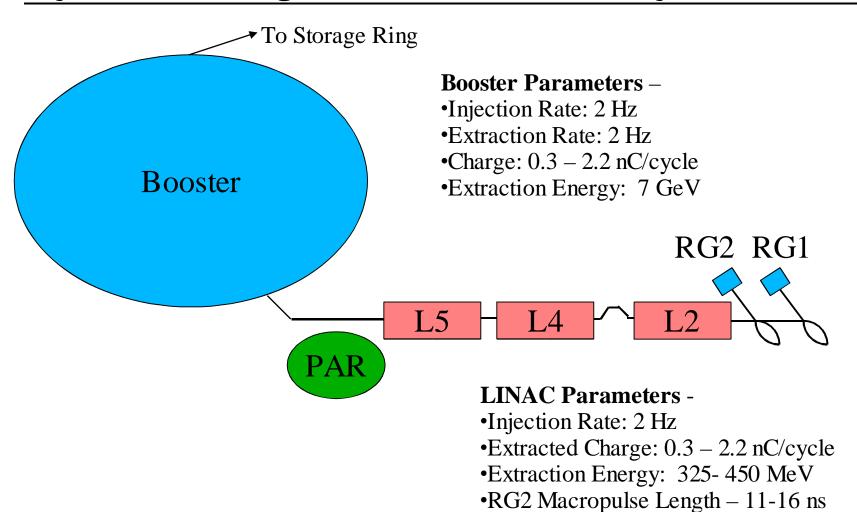
LINAC Parameters -

•Pulse Rate: 6 Hz

•Injection Pulses: 1-3

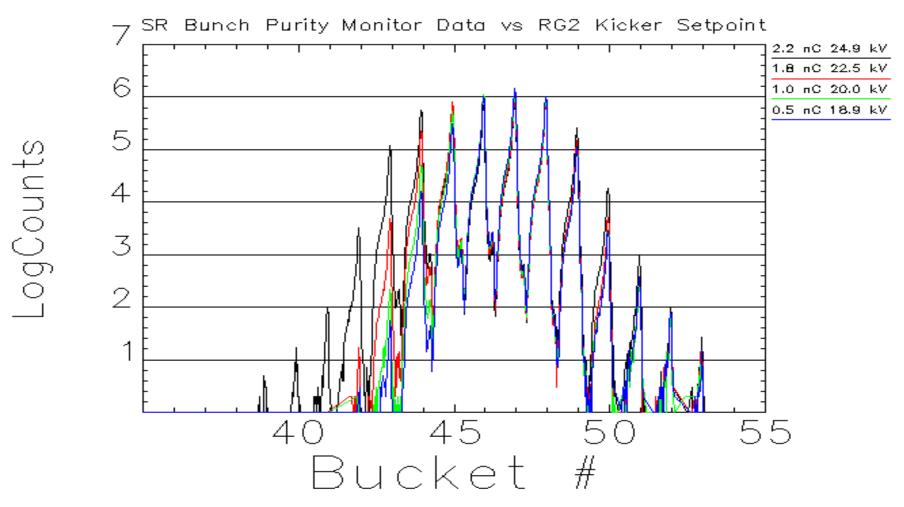
•Extracted Charge: 0.3 – 1 nC

•Extraction Energy: 325 - 450 MeV


Impact of PAR Operation Above 325 MeV

- PAR fundamental and harmonic RF systems must not have reduced reliability.
 - Design is 40 kV for fundamental and 30 kV harmonic gap voltage at 450 MeV.
 - Presently operate the fundamental at 31 kV and the harmonic at 27 kV for 325 MeV.
- Somewhere between 325 MeV and 400 MeV the linac loses "redundancy" (ability to fill the PAR without L4 or L5).
 - Presently, operators simply drive the working system harder to get 325 MeV (~5 minutes).
 - Above the redundancy energy, PAR and linac need to be standardized to down to 325 MeV (~10 minutes).
- The interleaving benefit may require additional pulsed quadrupoles in LTP to match the transverse optics of the PC gun beam into the PAR.

Injector Configuration for Direct Injection



•RG1 Macropulse Length – 30 ns

"Impure" Direct Injection – Storage Ring Bucket Pattern

"Pure" Direct Injection Options

- Bunch cleaning in the booster (transverse knock-out)
 - By itself, this throws away too much charge to be practical
 - Booster power supply regulation is a problem
 - Injection at 400-450 MeV helps
 - May be useful in combination with another scheme
- Use a subharmonic capture cavity in the booster
 - Not straight-forward due to low rf-frequency (~30 MHz) and high voltage (~650 kV)
 - Can be made easier by
 - Shortening the gun pulse
 - Combining with bunch cleaning

Pure Direct Injection Options

Replace the rf gun kickers with faster kickers

- Recent attempt to speed up existing kickers didn't succeed
- SSRL rf guns use a swept kicker that delivers a ~2ns pulse
 - Could explore this with a ~5ns design
 - Requires running the gun very hard (~10-20x present level)
 - Cathode lifetime would be shortened

Use a short-pulse DC gun

- Can provide high charge
- Difficult to do reliably (Nassiri)
- Can still have multiple guns using alpha magnets (SLAC does)
- Requires changes to the front end that might require removal of the PC gun

Pure Direct Injection Options

- Use a laser-driven rf gun that delivers high charge in a short pulse
 - LEUTL's PC gun is not suitable in spite of 5-ps pulse length
 - There is still no solution to the booster-to-laser timing issue
 - The system is not reliable or robust enough for operations
 - Not clear that it can deliver 5~10 nC/pulse without damaging cathode
 - Use of a "long-pulse" (~5 ns) drive laser is an option
 - Duke University does this for their injector
 - The bunch purity may not be adequate (O'Shea)
 - Combine with bunch cleaning or subharmonic capture

Pure Direction Injection

- Our best non-PAR option seems to be
 - Long-pulse-laser-driven gun delivering
 - <=5ns pulse length
 - Up to 10 nC per pulse
 - If needed, provide high bunch purity with
 - Bunch cleaning and 450 MeV injection, and/or
 - 117 MHz rf system in booster
- We need considerable R&D to ensure that this will work
- We need to have some assurance that the new system will be more reliable than the old one!

Issues with Long-Pulse-Laser-Driven Gun

Main issue: does it work reliably?

- A laser-drive system with 5-ns macropulse implies 2-Amp pulse off the cathode.
- We now run at 100-200 mA in a 2-us pulse.
 - The guns as presently run are very reliable
 - Cathodes last for years
- Does cathode get damaged/degraded over time?
- What is laser lifetime and reliability?
- High peak current will impact
 - Emittance
 - Bunch compression and energy spread
 - Wakefields
 - Transport efficiency

Thorough Testing Required

- We'll require significant time both for experiments and simulated long-term running.
- Use ITS to investigate as many issues as possible using a standard APS rf gun.
 - Standard guns are easy to operate and familiar to operators
 - With standard gun, can do rapid laser vs. thermionic comparisons that are directly relevant to operations
 - We know what to expect from a standard gun in terms of
 - Beam quality
 - Cathode damage (none)
 - Reliability (very high)
- After ITS testing, try on installed RG1 or RG2 gun.
 - Use for a full run as the primary gun
 - Unmodified gun used as backup

Pure Direct Injection Will Require Time to Implement

- Gun testing: ~6-12 months.
 - Install standard gun
 - Benchmark diagnostics and measurement techniques
 - Characterize beams (thermionic- and laser-derived)
 - Determine operating parameters
 - Long-term test (1 month of simulated top-up)
 - Inspection of cathode surface
 - Operational test using RG1 or RG2 (1 run)
 - Inject directly into booster and measure SR bunch purity
- Following gun testing, decide if subharmonic system and/or bunch cleaning is needed.
 - If so, develop and deliver operations-ready system.
 - Guesstimate about a year needed for this

Conclusion

- APS requires high-charge, high-purity injector to support user operations, particularly top-up.
- Existing rf guns + PAR meet requirements.
- PAR kicker upgrade would
 - Improve operational reliability.
 - Make the system easier to maintain.
 - Possibly allow higher energy, more reliable injection.
- "Impure" direct injection has been demonstrated using RG2 and can be used to fill the SR in the event the PAR is down.
- Significant effort required to realize "pure" direct injection and retire the PAR.
 - Long-pulse-laser-driven rf gun.
 - Construction of bunch cleaning or subharmonic capture system.
- PAR retirement is probably at least 2 years away.

